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Abstract 

\\!e study a model where domain walls are generated through a cosmological phase 

t,ransition involving a scalar field. We assume the existence of a coupling between the 

scalar field and dark matter and show that the interaction between domain walls 

and dark matter lea,ds t,o an energy dependent reflection mechanism. For a simple 

\r~‘uka,wa coupling. TY~ find that ~the vacuum expectation value of the scalar field is 

(0) = :30&k - lTeV, in order for the model to be successful in t,he formation of very 

large scale “pancake” structures. 
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The existence of a very large s&e st,ructure of t,he Universe is one of the most 

interesting problems of modern Cosmology. The recent data of the so called “pencil 

beams sur”eys, ’ sca,nning small portions of t,he sky up to redshift,s close to unity, 

st,rongly suggests t,hat, clustcrin g extends up to scales close to lOOh-‘Mpc. These 

da,ta prompted new interest, in scenarios for the formation of large scale structure 

alternative t,o t,he standard cold dark matter perturbation model. 

Domain walls, generated through a second order cosmological phase transition, 

could be an avenue of research in this field? since they provide an alternative model 

for st.rllcture formation. In the first, domnin wall models. these topological defects were 

assumed to couple to the matter solely through gravitatiomze3 As a consequence of 

t,he weakness of the interaction. domain ma.lls would stretch undisturbed under their 

surfa,w tension a,nd rapidly reach relativistic speeds, \vith the resulting n&work scale 

~Iose 1,~) t,ha,t, of the Ilorizou:‘-’ Ilccent work by one of the a,uthors 6-7 has indica,ted that 

the assumption of a norI-gravit,atioual coupling between the walls and a cosmologically 

significzmt neutral component. of dark matter can drastically change t,he features of 

the model. Briefly summarizing. it was shown that if such a coupling leads to particle 

reflection? then the domain walls ca,n he slowed down very efficiently. .4t the same 

time. the walls can sweep large quantities of matter in their motion and, at a. late 

stage of their evolution, give rise to wakes of 1 - lOh-‘Mpc thickness. The model 

a,lso predicts comoving “interwake” distances of the order of 10 - lOOh-'Adpc. It was 

found that fermions of mass m w 1 - I~OeV would be an ideal candidate for the dark 

Illatter intemcting wit01 the walls. 

1~ t,his Letter. we will st,udy the particle-kink int,eraction that derives from intro- 

ducillg a simple model coupling bct~ween the field of the walls 4 and that of the dark 

rna.ti.er ,2/x 

&I = T P ' (il ~+3)' - T(Q" - cji)' + ,zi;[ia)+ + qf(~#1)7j$, (1) 

The scalar potential is chosen so as to give rise to a symmetry breaking, generating 

the domain walls and at least put of the fermion mass. Notice that any potential 

generating domain walls (e.g. a sine-Gordon potential) is well approximated by this 

‘l&l” scalar Lagrsngian. Our choice of the coupling is by no means exhaustive, but 

it gives us an opportunity to introduce the formalism apprpria,te to the study of the 

more general w&particle scattering problem. We will not attempt to investigate the 

fundamental theory from which the C,ff could originate. 
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~\fe take the classic,al kink solitorl solution for the SC&~ field.*-” The field 4 

has vac”um expectation values ($5) = +d, or -0 and has the usual form 4,(z) = 0 
& tanh(z/A), where A gives the thickness of the domain ma~ll. In order to consider 

the behavior of the fermions as they pass through domain wall bounda,ry me look at 

the stationary solut,ions to the Dirac equation, coming from the Lagrangian above,” 

(6 ‘F-t g/3f(bc(z)))7b = m, (2) 

where $ = db 

i 1 ‘hb ’ 
+a ( & being two component spinors. We can write the Dirac 

equation (in the Dirac representation) as lo 

Solving for f>b in terms of 1::,, ire get,: 

c? q ,da,,, ) 

which is equivalent to 

-v’ib + 
$7~,f(&) aa 

E + gf($$c) 
(E* -g*f*(&)) 

-V2$ _ s+7f(h) ‘aa a 
E - g.f(4c) 

(3) 

(4) 

(5) 

.As one might expect there is no spin dependence and we can write the expression 

in one dimensionA form: 

df(&) d& 
-it gdz dz d% 

dzz = (E2 - s’f’(h)Ma > 

Et Il.06,) 

a,ntl a similar e:pression for c’&. 

For particular choices of f(d) one can simplify eq,(6). In particular, we studied 

the simple Yukawa case f(d) = I$. Th e interaction term can be interpreted as a 

Majorana neutrino mass term, where we can use weak singlets to define G. If one 
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t.hinks of it a,s a Dirac neutrino ma,ss; this term is clearly unaesthetic, since it breaks 

erl>licitly the S’lj2iiJei,i symmetry of the interaction La,grangian. Its presence should 

then be e.uplained ill the context of a luger t,heory in order to be realist.ic. Let us now 

consider the relative magnitude of the two t,erms on the 1.h.s. of eqn.(G). Far away 

from the kink dc$,/dz + 0, so this is just the Klein-Gordon equation for fermions of 

mass m, as we would expect. In the vicinity of the wall we can define a “momentum” 

pelf = J=TZi where rn,,, = g&(z). The second term in eq.(G) is, 

g $G& dvi, - 
dz dt = 

gd d&t o dz cosK2(2/A) 

Etgdc A(E t sd,) 

N y(l), 

where rnucc[g~,/(E + gc,h,)] = O(1). The first t,erm in eq.(6) is? on the other end, 

al’ the order of &,. ‘The problem simplifies if. during the interaction with the kink, 

WC ca.rl ignore the second term a,s compa,red to the first> i.e. if pz,, >> P~.,A-‘, or 

F,~,, > A-‘. We can achieve this by imposing the condition A > m;‘, since within 

t.t1e kink &,, - 1)L, = gdO >> A-‘. This turns out to be the condition we would 

like for the reflect,ion of the fermions to occur without pair creation. In fact, the 

probability of this happening is approximately given by P - (m/A)‘exp(-rmA), 

which is clearly suppressed by our condition on the barrier thickness. ” Ignoring then 

the gradient term, we ca.n write eq.(6) as: 

1 &a _-- 
2g’& dz’ + 

or. with nz = gpO: we halye 

-1* + (p + ; Lanh’j2/A)j & = 0 
‘m2 cl9 

This is a Scliroedinger-ljlie equation for a pwticle in a V(z) = l/2 tanh*(t/A) 

“potentiai“, with “mass” Cr = uz2 a,nd energy & = E*/2m*. This is a potential 

barrier with i? > VO. The reflection coefficient can be calculated exactly for this 

process and is given by’” 

R= 2 
cash* (,avzA) 

smh (TEA) + cash* (~rnA)’ (9) 

Examining this reflection coefficient for different values of the fermion velocity, we 

find that clearly R(v) + 1 as v t 0 and R(v) -+ 0 as u + 1. In the intermediate 

range. i.e. for nz,A >> u-’ but 2) < 1, we get 
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11 = 
1 

rsp(m.c’~A) + I (10) 

This exponential behavior of the reflection coefficient in this regime was actu- 

ally well approximated by a step function in ref.(7), in which we just supposed the 

existence of a thresllold energy c,. Apart from the detailed knowledge of the reflec- 

tion coefficient, eq.(lO) t,ells us that the threshold energy is simply correlated to the 

thickness of the walls, since E, - A-‘. 

A similar result could be obtained in an axion-like model, like the one explored in 

ref.(lZ). There, the fermion couplings with the axion field were written as rr~&‘~Q/~~, 

and the resulting Dirac equation cont,ains a spin dependent fermion mass term m* = 

~7, + .s,&q+~~. The domain walls are a barrier or a weIll of potential 6nz’ - A-‘, for 

opposit,e helicity states. 

For all t.he ca,ses in which the threshold energy t, is correlated to the wall thickness 

as c, N A-‘, we can use the results of ref.(7) to determine the constants in the domain 

wall potential of q.(l). In tl le model elaborated in ref.(;), “light” domain walls form 

some time well before recombinat,ioll. The dynamics of the domain wall network is 

strongly influenced by the intera,ction of wa~lls with the neutrino background. By 

being partly reflected from the wa~lls. the fermions gives rise to a friction pressure 

I’, > which is a function of the wall speed u and of the temperature of the fermion 

gas. In the first stages of the wall evolution the friction turns out to be irrelevant. 

At a. later sta.ge, when t,he friction becomes dominant, the domain walls slow down 

a,nd t,he comoving scale of the network at that epoch (which is roughly the scale 

of the horizon) remains frozen in. The comoving network scale at the freeze-in is 

typically ? - 10 - lOOh-‘Mpc and the matter wakes are 1 - lOh-‘Mpc thick, if 

t, - lo-” - lo-‘eV. The freeze in takes place at a redshift z N 10s - 10’. 

From eq.( 10) we can infer that A N lo4 - 105eV-‘. Since other dynamical consid- 

erations pin down the range for the wall surface density to 0 N 10-l - lMeV3, using 

the values of cr and A we can determine all of the parameters in the Lagrangian. 

From t.he relations IT - A& and A-’ - A@, we conclude that X N 10-l’ - 10-17, 

do - 1O’,5 - 10”GcV. This statement would be correct in all models of interaction 

whew one ohta,ins t, - A-‘. 

If one does not dismiss this conco~lance a,s a coincidence, the result may suggest 

a possible connection between the field 4, originating the topological defects, and the 
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scahr (Higgs) of the Weinberg-S 1, a rim model, which gives rise to the electroweak sym- 

metry breaking (stable domain walls cannot arise from the doublet itself). Because of 

the small value of tl~e X coupling constant: the phase transition that gives rise to the 

domain wa.lls actually takes place at much lower temperature than the electroweak 

scale. We can simply evaluate what is called the Ginzburg temperature by recalling 

tha.t T, ‘v X24:: we obtain Tg z 103-5el/, which is the temperature at which stable 

doma,in walls actua.lly form and begin stretching under their surface tension. 

The smallness of the X constant is typical of “light” domain wall models. Its 

value c.onstitutes one of the outstanding problems to solve, since it is not easy to 

accomodate the cosmological constraints using the simplest “realistic” particle physics 

models available. More resexch is needed in this direction. 

Special tha,nks to E. I<olbl D. Schramm, J. Harvey, J. Rosner, A,. Trivedi, L. 
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